## Purification, Purity, and Freezing Points of 16 API Standard and API Research Hydrocarbons

ANTON J. STREIFF, LAWRENCE H. SCHULTZ, NED C. KROUSKOP, JANET W. MOORE, and FREDERICK D. ROSSINI

Carnegie Institute of Technology, Pittsburgh 13, Pa.

'T HIS INVESTIGATION is a continuation of the work of producing highly purified hydrocarbons of the API Standard and API Research series (3). The purification and determination of purity and freezing points of 16 hydrocarbons, which include three cycloparaffins, four monoolefins, one cyclo-olefin, six alkyl benzenes, and two alkylidene-cycloparaffins are described.

The final lots of material labeled API Standard are sealed in vacuum in glass ampoules and made available as API Standard samples of hydrocarbons through the American Petroleum Institute Samples and Data Office at the Carnegie Institute of Technology. The material labeled API Research is made available in appropriate small lots through the American Petroleum Institute Research Project 44 for loan to qualified investigators for the measurement of needed physical, thermodynamic, and spectral properties.

Table I gives the names of the compounds, details concerning the first and succeeding distillations, and the character of the plot of the freezing point of the hydrocarbon part of the distillate as a function of its volume.

The procedures followed in the process of purification and determination of purity were the same as in previous articles (3). Details of the distillation apparatus and operations have been described (2). Beginning July 1, 1957, determination of the purity of the best lot of each hydrocarbon completed is being made calorimetrically with the apparatus recently described (1). The compounds reported in this article were completed before this new apparatus was placed in formal service.

Figures 1 to 3 show graphically the results of some typical

distillations and represent the cases where the purest material is, respectively, largely in the forepart of the distillation, in the middle of the distillation, and in the afterpart of the distillation. In each figure, plots are given for refractive index, boiling point, freezing point, and purity as a function of the volume of the hydrocarbon part of the distillate. As emphasized in the previous reports, the

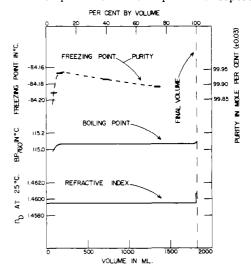
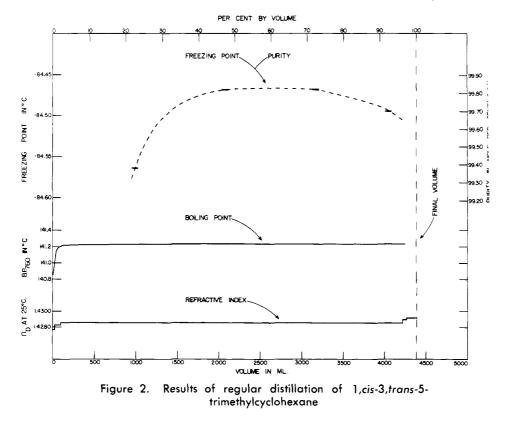




Figure 1. Results of azeotropic distillation of 1,2-dimethylcyclohexene with ethylene glycol monomethyl ether, methyl Cellosolve



Chemical and Petroleum Research Laboratory,

|                                                             |                                                                                |                                                                                                                | Distillation <sup>6</sup>                          |                                                                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|-------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                             | Hydrocarbon Charged for<br>Distillation                                        |                                                                                                                |                                                    | Azeotrope-<br>forming                                          | Rate of collection of distillate, | Time of<br>distil-<br>lation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
| Compound <sup>a</sup>                                       | Vol., l.                                                                       | Purity. mole %                                                                                                 | $\mathbf{Kind}^{c}$                                | substance                                                      | ml./hr.                           | hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location              |
| 1-Methyl-1-ethyl-cyclohexane                                | ${\begin{array}{c} {4.33}\\ {1.76'}\\ {1.76'}\\ {2.16'}\\ {1.82} \end{array}}$ | ····<br>···<br>···                                                                                             | Reg.<br>Azeo.<br>Azeo.<br>Azeo.<br>Azeo.           | Cell<br>Cell<br>Cell<br>Me Cell                                | 4<br>4<br>7<br>5                  | 1272<br>1296<br>1272<br>816<br>1272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M<br>M<br>M<br>M      |
| 1, <i>cis</i> -3, <i>cis</i> -5-Trimethyl-<br>cyclohexane   | $5.70 \\ 3.00$                                                                 | $\begin{array}{c} 99.36 \pm 0.10 \\ 99.91 \pm 0.04 \end{array}$                                                | Reg.<br>Azeo.                                      | Me Cell                                                        | 9<br>7                            | 790<br>936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A<br>F                |
| 1, <i>cis</i> -3, <i>trans</i> -5-Trimethyl-<br>cyclohexane | $4.85 \\ 2.95$                                                                 | $\begin{array}{c} 99.5 \ \pm \ 0.1 \\ 99.78 \ \pm \ 0.08 \end{array}$                                          | Reg.<br>Azeo.                                      | Me Cell                                                        | 4<br>4                            | 15 <b>84</b><br>1392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A<br>A                |
| 5-Methyl-trans-2-hexene                                     | $5.30 \\ 3.70$                                                                 | $\begin{array}{c} 99.63 \pm 0.10 \\ 99.89 \pm 0.07 \end{array}$                                                | Reg.<br>Azeo.                                      | Ethyl<br>alcohol                                               | 4<br>9                            | $\begin{array}{c} 1320\\ 672 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M<br>M                |
| 2-Methyl-trans-3-hexene                                     | $\begin{array}{c} 3.98\\ 2.60\end{array}$                                      | $\begin{array}{c} 99.66 \pm 0.12 \\ 99.82 \pm 0.12 \end{array}$                                                | Reg.<br>Azeo.                                      | Ethyl<br>alcohol                                               | 4<br>7                            | 960<br>648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A<br>M                |
| 3-Methyl-2-ethyl-1-butene                                   | 5.44<br>2.89                                                                   |                                                                                                                | Reg.<br>Azeo.                                      | Ethyl<br>alcohol                                               | <b>4</b><br>7                     | $\begin{array}{c} 1368 \\ 1200 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M<br>M                |
|                                                             | 1.90                                                                           |                                                                                                                | Azeo.                                              | Ethyl<br>alcohol                                               | 7                                 | 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | М                     |
| 2,5-Dimethyl-2-hexene                                       | $\begin{array}{c} 4.12 \\ 3.12 \\ 2.10 \\ 1.70 \end{array}$                    | ····<br>····<br>····                                                                                           | Reg.<br>Azeo.<br>Azeo.<br>Azeo.                    | Me Cell<br>Me Cell<br>Isopropyl<br>alcohol                     | 9<br>4<br>5<br>7                  | 552<br>1076<br>720<br>960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M<br>M<br>M<br>M      |
| 1,2-Dimethylcyclohexene                                     | $1.96' \\ 1.96'$                                                               | $\begin{array}{c} 99.85 \pm 0.05 \\ 99.85 \pm 0.05 \end{array}$                                                | Azeo.<br>Azeo.                                     | Me Cell<br>Me Cell                                             | 9<br>9                            | 528<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F<br>F                |
| 1-Methyl-2- <i>n</i> -propylbenzene                         | $4.14' \\ 4.14' \\ 3.03^{h}$                                                   | $\begin{array}{r} 96.6 \ \pm 0.2 \\ 96.6 \ \pm 0.2 \\ 99.77 \ \pm 0.08 \end{array}$                            | Reg.<br>Reg.<br>Azeo.                              | <br>Me Carb                                                    | 4<br>4<br>9                       | $1416 \\ 1104 \\ 672$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>A<br>M           |
| 1-Methyl-3- <i>n</i> -propylbenzene                         | 2.94 <sup>/</sup><br>2.94 <sup>/</sup><br>3.60 <sup>*</sup>                    | $\begin{array}{rrr} 99.4 & \pm \ 0.1 \\ 99.4 & \pm \ 0.1 \\ 99.91 & \pm \ 0.05 \end{array}$                    | Reg.<br>Reg.<br>Azeo.                              | <br>Me Carb                                                    | 7<br>7<br>9                       | 504<br>600<br>744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ד<br>ד                |
| 1-Methyl-4- <i>n</i> -propylbenzene                         | $3.82' \\ 3.82' \\ 2.51' \\ 2.50'$                                             | $\begin{array}{rrrr} 98.3 & \pm \ 0.2 \\ 98.3 & \pm \ 0.2 \\ 99.5 & \pm \ 0.1 \\ 99.5 & \pm \ 0.1 \end{array}$ | Reg.<br>Reg.<br>Azeo.<br>Azeo.                     | Me Carb<br>Me Carb                                             | 4<br>4<br>7<br>7                  | $1128 \\ 1008 \\ 812 \\ 984$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A<br>A<br>A           |
| 1,2-Dimethyl-4- ethylbenzene                                | $\begin{array}{c} 3.85\\ 2.81\end{array}$                                      | $\begin{array}{r} 99.5 \ \pm \ 0.1 \\ 99.75 \ \pm \ 0.09 \end{array}$                                          | Reg.<br>Azeo.                                      | Me Carb                                                        | 4<br>7                            | $\begin{array}{c} 1224 \\ 768 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A<br>A                |
| 1,3-Dimethyl-4-ethylbenzene                                 | 3.68 <sup>/</sup><br>3.68 <sup>/</sup><br>2.93 <sup>h</sup>                    | $\begin{array}{rrr} 97.1 & \pm \ 0.2 \\ 97.1 & \pm \ 0.2 \\ 99.79 & \pm \ 0.09 \end{array}$                    | Reg.<br>Reg.<br>Azeo.                              | <br>Me Carb                                                    | 9<br>7<br>4                       | 600<br>696<br>1272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A<br>A<br>A           |
| 1,4-Di- <i>tert</i> -butylbenzene                           | 4.13                                                                           |                                                                                                                | $Xtln.^{x}$                                        | • • • •                                                        |                                   | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •                 |
| Ethylidenecyclopentane                                      | $\begin{array}{c} 1.94 \\ 1.30 \end{array}$                                    | $\begin{array}{c} 98.4 \\ \ldots \end{array} \pm 0.1$                                                          | Azeo.<br>Azeo.                                     | Me Cell<br>Me Cell                                             | 7<br>7                            | 600<br>480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A<br>M                |
| Ethylidenecyclohexane                                       | 2.27'<br>2.27'<br>1.60''<br>2.75'<br>1.05''<br>1.05''                          | 99.4 $\pm 0.1$<br>99.4 $\pm 0.1$<br>99.4 $\pm 0.1$<br>99.4 $\pm 0.1$                                           | Azeo.<br>Azeo.<br>Azeo.<br>Azeo.<br>Azeo.<br>Azeo. | Me Cell<br>Me Cell<br>Me Cell<br>Me Cell<br>Me Cell<br>Me Cell | 7<br>5<br>7<br>5<br>5             | $1008 \\ 744 \\ 1080 \\ 1080 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 528 \\ 5$ | A<br>A<br>A<br>A<br>A |

Table I. Information on the Purification of 16 API Standard and API Research Hydrocarbons

<sup>a</sup>All starting materials were provided by the API Research Project 45 at the Ohio State University, Columbus, Ohio, except 1,4-di-tertbutylbenzene supplied by Esso Research and Engineering Co., Linden, N. J. All distillations were made in columns of 200 theoretical plates. See (2) for further details.

Azeo, azeotropic; reg., regular. Cell for Cellosolve, ethylene glycol monoethyl ether; Me Cell, for methyl Cellosolve, ethylene glycol monomethyl ether; Me Carb, for methyl Carbitol, diethylene glycol monomethyl ether. General location of the purest material in the hydrocarbon part of the distillate as a function of its volume: F, fore or front of the

distillate; M, middle part; A, afterpart.

One of two similar distillations.

<sup>#</sup> Purified by fractional crystallization.

<sup>h</sup>Material having substantially the same composition from each of the preceding two distillations.

One of two similar distillations of material having substantially the same composition from the first two distillations.

Material having substantially the same composition from each of the preceding three distillations. One of two similar distillations of material having substabtially the same composition from the preceding distillation.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Freezing Point in Air at<br>1 Atm., ° C.                                                                                                                                      |                                                                                                                                                                            | Freezing Point for                                                                                                                                                                                                                                                                                                                             | Cryoscopic<br>Constant <sup>ª</sup><br>A                                                                                                                               | Calcd. Amount of Impurity, <sup>b</sup><br>Mole %                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | API                                                                                                                                                                           | API                                                                                                                                                                        | Zero Impurity in Air<br>at 1 Atm., ° C.                                                                                                                                                                                                                                                                                                        | Mole<br>Fraction/Deg.                                                                                                                                                  | API<br>Standard                                                                                                                                                                                                                                                                                                            | API<br>Research                                                                                                                                                                                                                                                                                                                            |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standard                                                                                                                                                                      | Research                                                                                                                                                                   | at 1 Atm., <sup>-</sup> C.                                                                                                                                                                                                                                                                                                                     | r raction/ Deg.                                                                                                                                                        | Standard                                                                                                                                                                                                                                                                                                                   | nesearch                                                                                                                                                                                                                                                                                                                                   |
| 1-Methyl-1-ethylcyclohexane<br>1,cis-3,trans-5-Trimethylcyclohexane<br>1,cis-3,trans-5-Trimethylcyclohexane<br>trans-5-Methyl-2-hexene<br>trans-2-Methyl-2-hexene<br>3-Methyl-2-ethyl-1-butene<br>2,5-Dimethyl-2-hexene<br>1,2-Dimethyl-2-hexene<br>1-Methyl-2-n-propylbenzene<br>1-Methyl-3-n-propylbenzene<br>1-Methyl-4-n-propylbenzene<br>1,2-Dimethyl-4-ethylbenzene<br>1,3-Dimethyl-4-ethylbenzene<br>1,4-Di-tert-butylbenzene<br>Ethylidenecyclopentane<br>Ethylidenecyclohexane | $\begin{array}{c} -43.257\\ -84.463\\ -124.372\\ -141.590\\ \hline \\ \\ -84.165\\ -60.325\\ -82.600\\ -63.730\\ -66.964\\ -62.920\\ +77.577\\ -126.594\\ -92.478\end{array}$ | $\begin{array}{c} -43.250\\ -84.450\\ -124.370\\ -141.590\\ \hline \\ -84.159\\ -60.322\\ -82.598\\ -63.725\\ -66.960\\ -62.918\\ +77.602\\ -126.594\\ -92.475\end{array}$ | $\begin{array}{c} -43.220 \pm 0.020 \\ -84.430 \pm 0.015 \\ -124.340 \pm 0.020 \\ -141.560 \pm 0.025 \\ \end{array}$ $\begin{array}{c} -84.145 \pm 0.010 \\ -60.305 \pm 0.015 \\ -82.580 \pm 0.015 \\ -63.695 \pm 0.010 \\ -66.930 \pm 0.020 \\ -62.880 \pm 0.020 \\ +77.610 \pm 0.010 \\ -126.575 \pm 0.015 \\ -92.440 \pm 0.015 \end{array}$ | $\begin{array}{c} 0.0223\\ 0.0463\\ 0.0343\\ 0.0368\\ \hline \\ 0.0275\\ 0.0392\\ 0.0350\\ 0.0315\\ 0.0315\\ 0.0341\\ 0.0352\\ 0.0214\\ 0.0334\\ 0.0378\\ \end{array}$ | $\begin{array}{l} (0.20 \pm 0.15)^c \\ 0.08 \pm 0.04 \\ 0.15 \pm 0.07 \\ 0.11 \pm 0.07 \\ 0.11 \pm 0.09 \\ (0.20 \pm 0.15)^c \\ (0.20 \pm 0.15)^c \\ 0.06 \pm 0.03 \\ 0.08 \pm 0.06 \\ 0.07 \pm 0.05 \\ 0.11 \pm 0.03 \\ 0.12 \pm 0.07 \\ 0.14 \pm 0.07 \\ 0.07 \pm 0.02 \\ 0.06 \pm 0.05 \\ 0.01 \pm 0.06 \\ \end{array}$ | $\begin{array}{c} (0.15 \pm 0.10)^{\circ} \\ 0.07 \pm 0.04 \\ 0.09 \pm 0.07 \\ 0.10 \pm 0.07 \\ 0.11 \pm 0.09 \\ (0.15 \pm 0.10)^{\circ} \\ (0.15 \pm 0.10)^{\circ} \\ 0.04 \pm 0.03 \\ 0.07 \pm 0.06 \\ 0.06 \pm 0.05 \\ 0.09 \pm 0.03 \\ 0.10 \pm 0.07 \\ 0.13 \pm 0.07 \\ 0.02 \pm 0.02 \\ 0.06 \pm 0.05 \\ 0.013 \pm 0.06 \end{array}$ |

Table II. Freezing Points and Purity of 16 API Standard and API Research Hydrocarbons

 $^{a}_{b}$ See (2) for experimental details and definition of cryoscopic constant.

Values in this column, except as noted, were calculated using values of the cryoscopic constants and freezing points for zero impurity given in previous columns (2).

Estimated by analogy with isomers subjected to similar purification.

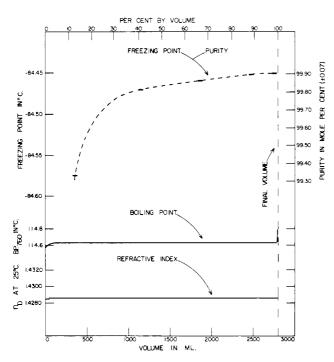



Figure 3. Results of azeotropic distillation of 1,*cis*-3,*trans*-5trimethylcyclohexane with ethylene glycol monomethyl ether, methyl Cellosolve

blending of fractions of distillate for the preparation of material of the highest purity can be done safely only on the basis of the freezing points.

For all compounds listed in Table II, the freezing point, where given, was determined by observing time-temperature curves of the melting compound. Also given are the freezing point of the actual sample, the calculated value of the freezing point for zero impurity, the value of the cryoscopic constant determined from the lowering of the freezing point on the addition of a known amount of a suitable impurity (2), and the calculated amount of impurity in the API Standard and API Research materials.

## ACKNOWLEDGMENT

Grateful acknowledgment is made to the organizations mentioned in Table I for their contributions of starting materials. The authors also express appreciation of the assistance of W. T. Beery and P. R. Eisaman in portions of this investigation.

## LITERATURE CITED

- (1) Pilcher, Geoffrey, Anal Chim. Acta 17, 144 (1957).
- (2) Rossini, F. D., Mair, B. J., Streiff, A. J., "Hydrocarbons from Petroleum," Reinhold, New York, 1953.
- (3) Streiff, A. J., Schultz, L. H., Hulme, A. R., Tucker, J. A., Krouskop, N. C., Rossini, F. D., Anat. Chem. 29, 361 (1957); (additional references).

RECEIVED for review December 19, 1958. Accepted July 14, 1959. Work done as part of API Research Project 6.